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Abstract
Pregel [23] was recently introduced as a scalable graph min-
ing system that can provide significant performance im-
provements over traditional MapReduce implementations.
Existing implementations focus primarily on graph par-
titioning as a preprocessing step to balance computation
across compute nodes. In this paper, we examine the run-
time characteristics of a Pregel system. We show that graph
partitioning alone is insufficient for minimizing end-to-end
computation. Especially where data is very large or the run-
time behavior of the algorithm is unknown, an adaptive ap-
proach is needed. To this end, we introduce Mizan, a Pregel
system that achieves efficient load balancing to better adapt
to changes in computing needs. Unlike known implementa-
tions of Pregel, Mizan does not assume any a priori knowl-
edge of the structure of the graph or behavior of the algo-
rithm. Instead, it monitors the runtime characteristics of the
system. Mizan then performs efficient fine-grained vertex
migration to balance computation and communication. We
have fully implemented Mizan; using extensive evaluation
we show that—especially for highly-dynamic workloads—
Mizan provides up to 84% improvement over techniques
leveraging static graph pre-partitioning.

1. Introduction
With the increasing emphasis on big data, new platforms are
being proposed to better exploit the structure of both the
data and algorithms (e.g., Pregel [23], HADI [14], PEGA-
SUS [13] and X-RIME [31]). Recently, Pregel [23] was in-
troduced as a message passing-based programming model
specifically targeting the mining of large graphs. For a wide
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array of popular graph mining algorithms (including PageR-
ank, shortest paths problems, bipartite matching, and semi-
clustering), Pregel was shown to improve the overall perfor-
mance by 1-2 orders of magnitude [17] over a traditional
MapReduce [6] implementation. Pregel builds on the Bulk
Synchronous Parallel (BSP) [30] programming model. It
operates on graph data, consisting of vertices and edges.
Each vertex runs an algorithm and can send messages—
asynchronously—to any other vertex. Computation is di-
vided into a number of supersteps (iterations), each sepa-
rated by a global synchronization barrier. During each su-
perstep, vertices run in parallel across a distributed infras-
tructure. Each vertex processes incoming messages from the
previous superstep. This process continues until all vertices
have no messages to send, thereby becoming inactive.

Not surprisingly, balanced computation and communi-
cation is fundamental to the efficiency of a Pregel system.
To this end, existing implementations of Pregel (including
Giraph [8], GoldenOrb [9], Hama [28], Surfer [4]) primar-
ily focus on efficient partitioning of input data as a pre-
processing step. They take one or more of the following
five approaches to achieving a balanced workload: (1) pro-
vide simple graph partitioning schemes, like hash- or range-
based partitioning (e.g., Giraph), (2) allow developers to set
their own partitioning scheme or pre-partition the graph data
(e.g., Pregel), (3) provide more sophisticated partitioning
techniques (e.g., GraphLab, GoldenOrb and Surfer use min-
cuts [16]), (4) utilize distributed data stores and graph index-
ing on vertices and edges (e.g., GoldenOrb and Hama), and
(5) perform coarse-grained load balancing (e.g., Pregel).

In this paper, we analyze the efficacy of these workload-
balancing approaches when applied to a broad range of
graph mining problems. Built into the design of these ap-
proaches is the assumption that the structure of the graph
is static, the algorithm has predictable behavior, or that the
developer has deep knowledge about the runtime character-
istics of the algorithm. Using large datasets from the Lab-
oratory for Web Algorithmics (LAW) [2, 20] and a broad
set of graph algorithms, we show that—especially when the



graph mining algorithm has unpredictable communication
needs, frequently changes the structure of the graph, or has
a variable computation complexity—a single solution is not
enough. We further show that a poor partitioning can result
in significant performance degradation or large up-front cost.

More fundamentally, existing workload balancing ap-
proaches suffer from poor adaptation to variability (or shifts)
in computation needs. Even the dynamic partition assign-
ment that was proposed in Pregel [23] reacts poorly to highly
dynamic algorithms. We are, thus, interested in building a
system that is (1) adaptive, (2) agnostic to the graph struc-
ture, and (3) requires no a priori knowledge of the behavior
of the algorithm. At the same time, we are interested in im-
proving the overall performance of the system.

To this end, we introduce Mizan1, a Pregel system that
supports fine-grained load balancing across supersteps. Sim-
ilar to other Pregel implementations, Mizan supports differ-
ent schemes to pre-partition the input graph. Unlike exist-
ing implementations, Mizan monitors runtime characteris-
tics of all vertices (i.e., their execution time, and incoming
and outgoing messages). Using these measurements, at the
end of every superstep, Mizan constructs a migration plan
that minimizes the variations across workers by identify-
ing which vertices to migrate and where to migrate them
to. Finally, Mizan performs efficient vertex migration across
workers, leveraging a distributed hash table (DHT)-based lo-
cation service to track the movement of vertices as they mi-
grate.

All components of Mizan support distributed execution,
eliminating the need for a centralized controller. We have
fully implemented Mizan in C++, with the messaging—
BSP—layer implemented using MPI [3]. Using a representa-
tive number of datasets and a broad spectrum of algorithms,
we compare our implementation against Giraph, a popular
Pregel clone, and show that Mizan consistently outperforms
Giraph by an average of 202%. Normalizing across plat-
forms, we show that for stable workloads, Mizan’s dynamic
load balancing matches the performance of the static parti-
tioning without requiring a priori knowledge of the structure
of the graph or algorithm runtime characteristics. When the
algorithm is highly dynamic, we show that Mizan provides
over 87% performance improvement. Even with inefficient
input partitioning, Mizan is able to reduce the computation
overhead by up to 40% when compared to the static case,
incurring only a 10% overhead for performing dynamic ver-
tex migration. We even run our implementation on an IBM
Blue Gene/P supercompter, demonstrating linear scalability
to 1024 CPUs. To the best of our knowledge, this is the
largest scale out test of a Pregel-like system to date.

To summarize, we make the following contributions:

1 Mizan is Arabic for a double-pan scale, commonly used in reference to
achieving balance.

• We analyze different graph algorithm characteristics that
can contribute to imbalanced computation of a Pregel
system.

• We propose a dynamic vertex migration model based on
runtime monitoring of vertices to optimize the end-to-end
computation.

• We fully implement Mizan in C++ as an optimized Pregel
system that supports dynamic load balancing and effi-
cient vertex migration.

• We deploy Mizan on a local Linux cluster (21 machines)
and evaluate its efficacy on a representative number of
datasets. We also show the linear scalability of our design
by running Mizan on a 1024-CPU IBM Blue Gene/P.

This paper is organized as follows. Section 2 describes
factors affecting algorithm behavior and discusses a number
of example algorithms. In Section 3, we introduce the design
of Mizan. We describe implementation details in Section 4.
Section 5 compares the performance of Mizan using a wide
array of datasets and algorithms. We then describe related
work in Section 6. Section 7 discusses future work and
Section 8 concludes.

2. Dynamic Behavior of Algorithms
In the Pregel (BSP) computing model, several factors can
affect the runtime performance of the underlying system
(shown in Figure 1). During a superstep, each vertex is
either in an active or inactive state. In an active state, a
vertex may be computing, sending messages, or processing
received messages.

Naturally, vertices can experience variable execution
times depending on the algorithm they implement or their
degree of connectivity. A densely connected vertex, for ex-
ample, will likely spend more time sending and process-
ing incoming messages than a sparsely connected vertex.
The BSP programming model, however, masks this varia-
tion by (1) overlapping communication and computation,
and (2) running many vertices on the same compute node.
Intuitively, as long as the workloads of vertices are roughly
balanced across computing nodes, the overall computation
time will be minimized.

Counter to intuition, achieving a balanced workload is not
straightforward. There are two sources of imbalance: one
originating from the graph structure and another from the
algorithm behavior. In both cases, vertices on some compute
nodes can spend a disproportional amount of time comput-
ing, sending or processing messages. In some cases, these
vertices can run out of input buffer capacity and start pag-
ing, further exacerbating the imbalance.

Existing implementations of Pregel (including Gi-
raph [8], GoldenOrb [9], Hama [28]) focus on providing
multiple alternatives to partitioning the graph data. The three
common approaches to partitioning the data are hash-based,
range-based, or min-cut [16]. Hash- and range-based parti-



Superstep 1 Superstep 2 Superstep 3

-Vertex response time

-Time to send out messages

-Time to receive in messages

Worker 3

Worker 2

Worker 1

Worker 3

Worker 2

Worker 1

Worker 3

Worker 2

Worker 1

BSP Barrier

Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.
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stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-



ues of the graph’s adjacency matrix at each iteration.3 The
algorithm terminates when the PageRank values of all nodes
change by less than a defined error during an iteration. At
each superstep, all vertices are active, where every vertex
always receives messages from its in-edges and sends mes-
sages to all of its out-edges. All messages have fixed size
(8 bytes) and the computation complexity on each vertex is
linear to the number of messages.

Top-K Ranks in PageRank. It is often desirable to perform
graph queries, like using PageRank to find the top k vertex
ranks reachable to a vertex after y supersteps. In this case,
PageRank runs for x supersteps; at superstep x + 1, each
vertex sends its rank to its direct out neighbors, receives
other ranks from its in neighbors, and stores the highest
received k ranks. At supersteps x + 2 and x + y, each
vertex sends the top-K ranks stored locally to its direct out
neighbors, and again stores the highest k ranks received from
its in neighbors. The message size generated by each vertex
can be between [1..k], which depends on the number of ranks
stored the vertex. If the highest k values maintained by a
vertex did not change at a superstep, that vertex votes to
halt and becomes inactive until it receives messages from
other neighbors. The size of the message sent between two
vertices varies depending on the actual ranks. We classify
this algorithm as non-stationary because of the variability in
message size and number of messages sent and received.

Distributed Minimal Spanning Tree (DMST). Implement-
ing the GHS algorithm of Gallager, Humblet and Spira [7] in
the Pregel model requires that, given a weighted graph, every
vertex classifies the state of its edges as (1) branch (i.e., be-
longs to the minimal spanning tree (MST)), (2) rejected (i.e.,
does not belong to the MST), or (3) basic (i.e., unclassified),
in each superstep. The algorithm starts with each vertex as a
fragment, then joins fragments until there is only one frag-
ment left (i.e., the MST). Each fragment has an ID and level.
Each vertex updates its fragment ID and level by exchang-
ing messages with its neighbors. The vertex has two states:
active and inactive. There is also a list of auto-activated ver-
tices defined by the user. At the early stage of the algorithm,
active vertices send messages over the minimum weighted
edges (i.e., the edge that has the minimum weight among the
other in-edges and out-edges). As the algorithm progresses,
more messages are sent across many edges according to the
number of fragments identified during the MST computa-
tions at each vertex. At the last superstep, each vertex knows
which of its edges belong to the minimum weighted span-
ning tree. The computational complexity for each vertex is
quadratic to the number of incoming messages. We classify
this algorithm as non-stationary because the flow of mes-

3 Formally, each iteration calculates: v(k+1) = cAtvk + (1 − c)/|N |,
where vk is the eigenvector of iteration k, c is the damping factor used for
normalization, and A is a row normalized adjacency matrix.

sages between vertices is unpredictable and depends on the
state of the edges at each vertex.

Simulating Advertisements on Social Networks. To sim-
ulate advertisements on a social network graph, each vertex
represents a profile of a person containing a list of his/her
interests. A small set of selected vertices are identified as
sources and send different advertisements to their direct
neighbors at each superstep for a predefined number of su-
persteps. When a vertex receives an advertisement, it is ei-
ther forwarded to the vertex’s neighbors (based on the ver-
tex’s interest matrix) or ignored. This algorithm has a com-
putation complexity that depends on the count of active ver-
tices at a superstep and whether the active vertices commu-
nicate with their neighbors or not. It is, thus, a non-stationary
algorithm.

We have also implemented and evaluated a number of
other—stationary and non-stationary—algorithms including
diameter estimation and finding weakly connected compo-
nents. Given that their behavior is consistent with the results
in the paper, we omit them for space considerations.

3. Mizan
Mizan is a BSP-based graph processing system that is simi-
lar to Pregel, but focuses on efficient dynamic load balancing
of both computation and communication across all worker
(compute) nodes. Like Pregel, Mizan first reads and parti-
tions the graph data across workers. The system then pro-
ceeds as a series of supersteps, each separated by a global
synchronization barrier. During each superstep, each vertex
processes incoming messages from the previous superstep
and sends messages to neighboring vertices (which are pro-
cessed in the following superstep). Unlike Pregel, Mizan bal-
ances its workload by moving selected vertices across work-
ers. Vertex migration is performed when all workers reach a
superstep synchronization barrier to avoid violating the com-
putation integrity, isolation and correctness of the BSP com-
pute model.

This section describes two aspects of the design of Mizan
related to vertex migration: the distributed runtime monitor-
ing of workload characteristics and a distributed migration
planner that decides which vertices to migrate. Other de-
sign aspects that are not related to vertex migration (e.g.,
fault tolerance) follow similar approaches to Pregel [23], Gi-
raph [8], GraphLab [22] and GPS [27]; they are omitted for
space considerations. Implementation details are described
in Section 4.

3.1 Monitoring
Mizan monitors three key metrics for each vertex and main-
tains a high level summary these metrics for each worker
node; summaries are broadcast to other workers at the end
of every superstep. As shown in Figure 4, the key metrics
for every vertex are (1) the number of outgoing messages to
other (remote) workers, (2) total incoming messages, and (3)
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the response time (execution time) during the current super-
step:

Outgoing Messages. Only outgoing messages to other ver-
tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.

Incoming Messages. All incoming messages are monitored,
those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).

Response Time. The response time for each vertex is mea-
sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
plan in parallel, without requiring any centralized coordina-
tion. The migration planner starts on every worker at the end
of each superstep (i.e., when all workers reach the synchro-
nization barrier), after it receives summary statistics (as de-
scribed in Section 3.1) from all other workers. Additionally,
the execution of the migration planner is sandwiched be-
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Figure 6. Summary of Mizan’s Migration Planner

tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than zdef , Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
zdef = 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of zdef and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wzi =
|xi−xmax|

standard deviation
, where xi is the run time of

worker i



outgoing or incoming messages are highly correlated with
the response time, then Mizan chooses the objective with
highest correlation score. The computation of the correlation
score is described in Appendix A.

STEP 3: Pair over-utilized workers with under-utilized
ones. Each overutilized worker that needs to migrate ver-
tices out is paired with a single underutilized worker. While
complex pairings are possible, we choose a design that is ef-
ficient to execute, especially since the exact number of ver-
tices that different workers plan to migrate is not globally
known. Similar to the previous two steps in the migration
plan, this step is executed by each worker without explicit
global synchronization. Using the summary statistics for the
chosen migration objective (in Step 2), each worker creates
an ordered list of all workers. For example, if the objective is
to balance outgoing messages, then the list will order work-
ers from highest to lowest outgoing messages. The resulting
list, thus, places overutilized workers at the top and least uti-
lized workers at the bottom. The pairing function then suc-
cessively matches workers from opposite ends of the ordered
list. As depicted in Figure 7, if the list contains n elements
(one for each worker), then the worker at position i is paired
with the worker at position n − i. In cases where a worker
does not have memory to receive any vertices, the worker is
marked unavailable in the list.

STEP 4: Select vertices to migrate. The number of vertices
to be selected from an overutilized worker depends on the
difference of the selected migration objective statistics with
its paired worker. Assume that wx is a worker that needs
to migrate out a number of vertices, and is paired with the
receiver, wy . The load that should be migrated to the under-
utilized worker is defined as ∆xy , which equals to half the
difference in statistics of the migration objective between the
two workers. The selection criteria of the vertices depends
on the distribution of the statistics of the migration objective,
where the statistics of each vertex is compared against a nor-
mal distribution. A vertex is selected if it is an outlier (i.e.,
if its V zistat

5). For example, if the migrating objective is to
balance the number of remote outgoing messages, vertices
with large remote outgoing messages are selected to migrate
to the underutilized worker. The sum of the statistics of the
selected vertices is denoted by

∑
Vstat which should mini-

mize |∆xy−
∑
Vstat| to ensure the balance between wx and

wy in the next superstep. If there not enough outlier vertices
are found, a random set of vertices are selected to minimize
|∆xy −

∑
Vstat|.

STEP 5: Migrate vertices. After the vertex selection pro-
cess, the migrating workers start sending the selected ver-
tices while other workers wait at the migration barrier. A
migrating worker starts sending the selected set of vertices
to its unique target worker, where each vertex is encoded

5 The z-score V zistat =
|xi−xavg|

standard deviation
, where xi is the statistics of

the migration objective of vertex i is greater than the zdef
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Figure 7. Matching senders (workers with vertices to mi-
grate) with receivers using their summary statistics

into a stream that includes the vertex ID, state, edge informa-
tion and the received messages it will process. Once a ver-
tex stream is successfully sent, the sending worker deletes
the sent vertices so that it does not run them in the next su-
perstep. The receiving worker, on the other hand, receives
vertices (together with their messages) and prepares to run
them in the next superstep. The next superstep is started once
all workers finish migrating vertices and reach the migration
barrier. The complexity of the migration process is directly
related to the size of vertices being migrated.

4. Implementation
Mizan consists of four modules, shown in Figure 8: the
BSP Processor, Storage Manager, Communicator, and Mi-
gration Planner. The BSP Processor implements the Pregel
APIs, consisting primarily of the Compute class, and the
SendMessageTo, GetOutEdgeIterator and getValue

methods. The BSP Processor operates on the data struc-
tures of the graph and executes the user’s algorithm. It also
performs barrier synchronization with other workers at the
end of each superstep. The Storage Manager module main-
tains access atomicity and correctness of the graph’s data,
and maintains the data structures for message queues. Graph
data can be read and written to either HDFS or local disks,
depending on how Mizan is deployed. The Communicator
module uses MPI to enable communication between work-
ers; it also maintains distributed vertex ownership informa-
tion. Finally, the Migration Planner operates transparently
across superstep barriers to maintain the dynamic workload
balance.

Mizan allows the user’s code to manipulate the graph con-
nectivity by adding and removing vertices and edges at any
superstep. It also guarantees that all graph mutation com-
mands issued at superstepx are executed at the end of the
same superstep and before the BSP barrier, which is illus-
trated in Figure 5. Therefore, vertex migrations performed
by Mizan do not conflict with the user’s graph mutations and
Mizan always considers the most recent graph structure for
migration planning.

When implementing Mizan, we wanted to avoid having a
centralized controller. Overall, the BSP (Pregel) model nat-
urally lends itself to a decentralized implementation. There
were, however, three key challenges in implementing a dis-
tributed control plane that supports fine-grained vertex mi-
gration. The first challenge was in maintaining vertex own-
ership so that vertices can be freely migrated across work-
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ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-
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Figure 9. Migrating vertex vi from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming wold is
the old owner and wnew is the new one, wold continues to
process the migrating vertex v in the next superstep, SSt+1.
wnew receives the messages for v, which will be processed
at the following superstep, SSt+2. At the end of SSt+1,wold

sends the new value of v, calculated at SSt+1, to wnew and
completes the delayed migration. Note that migration plan-
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G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SSt+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SSt+1 are addressed to
Worker new. At the barrier of SSt+1, Worker old sends
the edge information and state of v to Worker new and starts
SSt+2 with v fully migrated to Worker new.

With delayed migration, the consistency of computation
is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6 http://snap.stanford.edu
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Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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Figure 12. Comparing Mizan vs. Giraph using PageRank
on regular random graphs, the graphs are uniformly dis-
tributed with each has around 17M edge

Mizan consistently outperforms Giraph in all datasets and
reaches up to three times faster with 16 million vertexes.
While the execution time of both frameworks increases lin-
early with graph size, the rate of increase—slope of the
graph—for Giraph (0.318) is steeper than Mizan (0.09), in-
dicating that Mizan also achieves better scalability.

The experiments in Figures 12 and 11 show that Giraph’s
implementation is inefficient. It is a non-trivial task to dis-
cover the source of inefficiency in Giraph since it is tightly
coupled with Hadoop. We suspect that part of the ineffi-
ciency is due to the initialization cost of the Hadoop jobs
and the high overhead of communication. Other factors, like
internal data structure choice and memory footprint, might
also play a role in this inefficiency.

5.2 Effectiveness of Dynamic Vertex Migration
Given the large performance difference between Static
Mizan and Giraph, we exclude Giraph from further exper-
iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
behavior with diameter estimation; the results are omitted
for space considerations.

Figure 14 shows how Mizan’s dynamic migration was
able to optimize running PageRank starting with range-
based partitioning. The figure shows that Mizan’s migration
reduced both the variance in workers’ runtime and the su-
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Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournal1). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because
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Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-
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Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.
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Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.



Linux Cluster Blue Gene/P

hollywood-2011 arabic-2005

Processors Runtime (m) Processors Runtime (m)
2 154 64 144.7
4 79.1 128 74.6
8 40.4 256 37.9
16 21.5 512 21.5

1024 17.5

Table 3. Scalability of Mizan on a Linux Cluster of
16 machines (hollywood-2011 dataset), and an IBM
Blue Gene/P supercomputer (arabic-2005 dataset).

5.3 Overhead of Vertex Migration
To analyze migration cost, we measured the time for var-
ious performance metrics of Mizan. We used the PageR-
ank algorithm with a range-based partitioning of the
Live-Journal1 dataset on 21 workers. We chose range-
based partitioning as it provides the worst data distribution
according to previous experiments and therefore will trigger
frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
per vertex. In the LiveJournal1 dataset, Mizan paid a 9%
penalty of the total runtime to balance the workload, trans-
ferring over 1M vertices. As shown earlier in Figure 13, this
resulted in a 40% saving in computation time when com-
pared to Static Mizan. Moreover, Figures 14 and 15 compare
the algorithm runtime and the migration cost at each super-
step, the migration cost is at most 13% (at superstep 2) and
on average 6% for all supersteps that included a migration
phase.

5.4 Scalability of Mizan
We tested the scalability of Mizan on the Linux cluster
as shown in Table 3. We used two compute nodes as our
base reference as a single node was too small when running
the dataset (hollywood-2011), causing significant paging
activities. As Figure 18 shows, Mizan scales linearly with
the number of workers.

We were interested in performing large scale-out experi-
ments, well beyond what can be achieved on public clouds.
Since Mizan’s was written in C++ and uses MPI for mes-
sage passing, it was easily ported to IBM’s Blue Gene/P su-
percomputer. Once ported, we natively ran Mizan on 1024
Blue Gene/P compute nodes. The results are shown in Ta-
ble 3. We ran the PageRank algorithm using a huge graph
(arabic-2005) that contains 639M edges. As shown in
Figure 19, Mizan scales linearly from 64 to 512 compute
nodes then starts to flatten out as we increase to 1024 com-
pute nodes. The flattening was expected since with an in-
creased number of cores, compute nodes will spend more
time communicating than computing. We expect that as we
continue to increase the number of CPUs, most of the time
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Figure 18. Speedup on Linux Cluster of 16 machines using
PageRank on the hollywood-2011 dataset.
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Figure 19. Speedup on Shaheen IBM Blue Gene/P super-
computer using PageRank on the arabic-2005 dataset.

will be spent communicating (which effectively breaks the
BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained



and reacts slowly to large imbalances in the initial parti-
tioning or large behavior changes. Giraph, an open source
Pregel clone, supports both hash-based and range-based par-
titioning schemes; the user can also implement a differ-
ent graph partitioning scheme. Giraph balances the parti-
tions across the workers based on the number of edges or
vertices. GoldenOrb [9] uses HDFS as its storage system
and employs hash-based partitioning. An optimization that
was introduced in [12] uses METIS partitioning, instead of
GoldenOrb’s hash-based partitioning, to maintain a balanced
workload among the partitions. Additionally, its distributed
data storage supports duplication of the frequently accessed
vertices. Similarly, Surfer [4] utilizes min-cut graph parti-
tioning to improve the performance of distributed vertex cen-
tric graph processing. However, Surfer focuses more on pro-
viding a bandwidth-aware variant of the multilevel graph
partitioning algorithm (integrated into a Pregel implemen-
tation) to improve the performance of graph partitioning on
the cloud. Unlike Mizan, these systems neither optimize for
dynamic algorithm behavior nor message traffic.

Power-law Optimized Graph Processing Systems. Stan-
ford GPS (GPS) [27] has three additional features over
Pregel. First, GPS extends Pregel’s API to handle graph al-
gorithms that perform both vertex-centric and global compu-
tations. Second, GPS supports dynamic repartitioning based
on the outgoing communication. Third, GPS provides an op-
timization scheme called large adjacency list partitioning,
where the adjacency lists of high degree vertices are par-
titioned across workers. GPS only monitors outgoing mes-
sages, while Mizan dynamically selects the most appropriate
metric based on changes in runtime characteristics. Power-
Graph [10], on the other hand, is a distributed graph system
that overcomes the challenges of processing natural graphs
with extreme power-law distributions. PowerGraph intro-
duces vertex-based partitioning with replication to distribute
the graph’s data based on its edges. It also provides a pro-
gramming abstraction (based on gather, apply and scatter op-
erators) to distribute the user’s algorithm workload on their
graph processing system. The authors in [10] have focused
on evaluating stationary algorithms on power-law graphs.
It is, thus, unclear how their system performs across the
broader class of algorithms (e.g., non-stationary) and graphs
(e.g., non-power-law). In designing Mizan, we did not make
any assumptions on either the type of algorithm or shape
of input graph. Nonetheless, PowerGraph’s replication ap-
proach is complementary to Mizan’s dynamic load balancing
techniques. They can be combined to improve the robustness
of the underlying graph processing system.

Shared Memory Graph Processing Systems.
GraphLab [22] is a parallel framework (that uses distributed
shared memory) for efficient machine learning algorithms.
The authors extended their original multi-core GraphLab
implementations to a cloud-based distributed GraphLab,
where they apply a two-phase partitioning scheme that

minimizes the edges among graph partitions and allows
for a fast graph repartitioning. Unlike BSP frameworks,
computation in GraphLab is executed on the most recently
available data. GraphLab ensures that computations are
sequentially consistent through a derived consistency model
to guarantee the end result data will be consistent as well.
HipG [18] is designed to operate on distributed memory
machines while providing transparent memory sharing to
support hierarchical parallel graph algorithms. HipG also
support processing graph algorithms following the BSP
model. But unlike the global synchronous barriers of Pregel,
HipG applies more fine-grained barriers, called synchroniz-
ers, during algorithm execution. The user has to be involved
in writing the synchronizers; thus, it requires additional
complexity in the users’ code. GraphChi [19] is a disk based
graph processing system based on GraphLab and designed
to run on a single machine with limited memory. It requires
a small number of non-sequential disk accesses to process
the subgraphs from disk, while allowing for asynchronous
iterative computations. Unlike, Mizan these systems do not
support any dynamic load balancing techniques.

Specialized Graph Systems. Kineograph [5] is a distributed
system that targets the processing of fast changing graphs.
It captures the relationships in the input data, reflects them
on the graph structure, and creates regular snapshots of the
data. Data consistency is ensured in Kineograph by separat-
ing graph processing and graph update routines. This sys-
tem is mainly developed to support algorithms that mine the
incremental changes in the graph structure over a series of
graph snapshots. The user can also run an offline iterative
analysis over a copy of the graph, similar to Pregel. The
Little Engine(s) [25] is also a distributed system designed
to scale with online social networks. This system utilizes
graph repartitioning with one-hop replication to rebalanced
any changes to the graph structure, localize graph data, and
reduce the network cost associated with query processing.
The Little Engine(s) repartitioning algorithm aims to find
min-cuts in a graph under the condition of minimizing the
replication overhead at each worker. This system works as a
middle-box between an application and its database systems;
it is not intended for offline analytics or batch data process-
ing like Pregel or MapReduce. Trinity [29] is a distributed
in-memory key-value storage based graph processing sys-
tem that supports both offline analytics and online query an-
swering. Trinity provides a similar—but more restrictive—
computing model to Pregel for offline graph analytics. The
key advantage of Trinity is its low latency graph storage
design, where the data of each vertex is stored in a bi-
nary format to eliminate decoding and encoding costs.While
these systems address specific design challenges in process-
ing large graphs, their focus is orthogonal to the design of
Mizan.



7. Future Work
We are planning on making Mizan an open source project.
We will continue to work on number of open problems as
outlined in this section. Our goal is to provide a robust
and adaptive platform that frees developers from worrying
about the structure of the data or runtime variability of their
algorithms.

Although Mizan is a graph-agnostic framework, its per-
formance can degrade when processing extremely skewed
graphs due to frequent migration of highly connected ver-
tices. We believe that vertex replication, as proposed by
PowerGraph [10], offers a good solution, but mandates the
implementation of custom combiners. We plan to further
reduce frequent migrations in Mizan by leveraging vertex
replication, however, without requiring any custom combin-
ers.

So far, dynamic migration in Mizan optimizes for work-
loads generated by a single application or algorithm. We
are interested in investigating how to efficiently run multi-
ple algorithms on the same graph. This would better position
Mizan to be offered as a service for very large datasets.

8. Conclusion
In this paper, we presented Mizan, a Pregel system that
uses fine-grained vertex migration to load balance computa-
tion and communication across supersteps. Using distributed
measurements of the performance characteristics of all ver-
tices, Mizan identifies the cause of workload imbalance and
constructs a vertex migration plan without requiring central-
ized coordination. Using a representative number of datasets
and algorithms, we have showed both the efficacy and ro-
bustness of our design against varying workload conditions.
We have also showed the linear scalability of Mizan, scaling
to 1024 CPUs.

A. Computing the Correlation Score
In Mizan, the correlation scores between the workers’ re-
sponse time and their summary statistics are calculated using
two tests: clustering and sorting. In the clustering test CT ,
elements from the set of worker response times STime and
the statistics set SStat (either incoming or outgoing message
statistics) are divided into two categories based on their z-
score 7: positive and negative clusters. Elements from a set
S are categorized as positive if their z-scores are greater than
some zdef . Elements categorized as negative have a z-score
less than −zdef . Elements in the range (−zdef , zdef ) are ig-
nored. The score of the cluster test is calculated based on the
total count of elements that belongs to the same worker in the
positive and negative sets, which is shown by the following
equation:

7 The z-score Si
T ime&Si

Stat =
|xi−xavg|

standard deviation
, where xi is the run

time of worker i or its statistics

CTscore =
count(S+

Time ∩ S
+
Stat) + count(S−

Time ∩ S
−
Stat)

count(STime) + count(SStat)

The sorting test ST consists of sorting both sets, STime

and SStat, and calculating the z-scores for all elements. Ele-
ments with a z-score in the range (−zdef , zdef ) are excluded
from both sorted sets. For the two sorted sets STime and
SStat of size n and i ∈ [0..n − 1], a mismatch is defined if
the i-th elements from both sets are related to different work-
ers. That is, Si

T ime is the i-th element from STime, Si
Stat is

the i-th element from SStat, and Si
T ime ∈ Workerx while

Si
Stat /∈Workerx. A match, on the other hand, is defined if
Si
T ime ∈ Workerx and Si

Stat ∈ Workerx. A score of 1 is
given by the sorting test if:

STscore =
count(matches)

count(matches) + count(mismatches)

The correlation of sets STime and SStat are reported as
strongly correlated if (CT +ST )/2 ≥ 1, reported as weakly
correlated if 1 > (CT + ST )/2 ≥ 0.5 and reported as
uncorrelated otherwise.
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